


 

 
 
  

 

 

Flyrock in Surface 
Mining 

This book provides a comprehensive understanding of historical and recent research, 
with a critical review of several aspects of the fyrock phenomenon, along with the 
classifcation of pertinent literature. This puts fyrock into proper perspective and 
develops a comprehensive regime for fyrock prediction and control. It also addresses 
the blast danger zone demarcation based on scientifc understanding in comparison 
to the consequence-based approach supported by pertinent case studies. 

Features: 

• Discusses exclusive material on fyrock in surface mining. 
• Presents comprehensive and critical review of the fyrock phenomenon. 
• Reviews prediction and control mechanisms in vogue with scientifc and 

risk-based defnitions of blast danger zone. 
• Provides new insights into the fyrock defnitions, prediction, and prevention 

along with the research approach to the problem. 
• Includes Indian case studies and summarizes global data available in the 

published domain. 

This book is aimed at researchers and graduate students in mining and civil 
engineering, engineering geology, and blasting. 
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An accident is a chain of events . . . 

Anon. 

“Improvements are cumulative, then any improvements that we make 
in our blast planning and executing assuredly will enhance the Quality 
of our blasting safety. We can rapidly advance our improvement by 
benchmarking, emulating the best practices. It is essential for the lead-
ership of our explosives industry to underscore the crucial importance 
of continued blasting safety training for supervisors overseeing blasting 
operations, for blasters and for the personnel working in blasting 
crews. Alone, safety training is a paper tiger. We must instill in every 
blasting person a safe attitude, the sine qua non necessary to achieve 
the Quality performance standard for blasting safety, zero accidents.” 

—Brulia (1993) 

Author’s Take on Flyrock 

When things are perfectly engineered the system behaves, but still falters 
for uncertainties . . . as a rule . . . even if the mine-mill fragmentation 
system is fully engineered, the uncertainties in the rockmass, human 
intervention, and explosives provide enough reasons for a fragment to 
shoot out. 

To me fyrock is far more dangerous than ground vibrations. It can 
damage, injure, and even kill. I am still at loss to understand why people 
have spent a fortune in ground vibration predictions. 
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Preface 
In modern times of internet, ever-growing information, and its fow, it is practically 
diffcult to compile any document that qualifes as a book. The daily increasing sce-
nario of citations makes the task more diffcult. Despite this, there are references that 
qualify as classical works and there are just others which receive little attention or 
have little content. At the same time, one cannot be oblivious of yesterday’s works 
that might not have caught the attention of the authors but have signifcant content. 
Despite this, there are certain questions in science that are pertinent and require a sus-
tained introspection. The author is aware of the fact and the topic of the book chosen 
is akin to present-day surface mining. 

Blasting is important and rather a dominant method of rock excavation, even 
today. There are several outcomes of blast into which the energy provided by the 
explosives on detonation gets split up. The major portion of this energy is consumed 
by ground vibrations and air overpressure. Little energy is used to fragment and 
heave the rock broken under the infuence of explosive pressures. Least energy is 
however, in some cases, manifested in the form of rock fragments travelling beyond 
planned distances. Such fragments, known as fyrock, have gained importance after 
the author of this book provided new insights into the phenomenon with several 
instances to model the behaviour. 

Flyrock has received little attention until 2014 and has recorded a signifcant 
growth in its prediction and control thereafter. Since fyrock has a potential to cause 
fatalities, it should have received signifcant attention, but the facts are contrary. 
Vibrations and air overpressure have been dealt with by researchers in detail, though 
it can only damage the structures and has a nuisance value. The diffculty in acqui-
sition of suffcient data, reporting constrained by the known statutory consequences, 
occurrence by chance, and diffculty in defning the predictive regime of fyrock 
can be some of the reasons for the bias, if not otherwise. The multiple mechanics 
involved in the generation, launch, travel, and landing of a fyrock are additional 
complications that face the researchers. 

The prediction of fyrock is still a herculean task as one cannot produce fyrock 
for testing, and even if this is tried, there is no guarantee that fyrock will occur in 
a test. This specifcally eludes the researchers and makes it very diffcult to predict 
the same. Unlike fragmentation, throw, and vibrations from blasting, fyrock is an 
uncertain event. Also, if a fyrock is generated, whether it will travel in a direction 
of concern and hit any object or person and what could be the level of damage are 
all uncertain quantities. So, the phenomenon of fyrock has several associated prob-
abilities that not only makes the task of fyrock event and its travel distance diffcult 
to predict but places constraints on defning the blast danger zone around a pro-
posed blast. This has resulted in many regulations that are just fyrock event based 
and present little scientifc explanation. In addition, the consequences are extremely 
diffcult to quantify as lot of subjectivity is involved, particularly if fyrock hits a 
person. Thus, the consequences are diffcult to quantify. However, the probabilities 
and consequences can together be framed into a network to provide an insight into 



 
 

 

 

xiv Preface 

the risk involved due to fyrock. The method has an advantage that it can allow a 
dynamic blast danger zone, in contrast to the static zones, about the mines, and in 
turn allow mining of precious minerals, very close to the habitats. Accordingly, this 
book has been compiled with focus on literature and its review and to provide means 
and defne terms that can be used by researchers to control the fyrock. In brief, the 
book is addressed to the students and planners for poking into the issue rather than 
providing a holistic solution to the problem. 

I hope that students and researchers along with feld engineers and legislators, 
who are interested in blasting with a keen interest in the fyrock, will fnd the book 
a useful one. I am expecting response on the work, different new propositions and 
concepts, from seekers of the subject and critics. 
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1 Introduction 

Mining that consumes most of the explosives to date has a tremendous role in society 
as it not only contributes to the world GDP, but also forms the core of the industrial 
revolution, as metals and minerals are also produced from mines. No sphere of life 
on this planet is untouched by mining, including IT, as the basic hardware used in 
electronics has inking of minerals. 

Excavations are places where rockmass is removed for a variety of purposes. In 
some cases of excavations, only soil or soft rock is encountered that can be removed 
by mechanical devices like excavators. However, in many cases of excavations, hard 
rock is met, which needs to be broken and dislodged, before it can be lifted, loaded, 
and transported. If explosives are used to break such rock to facilitate easy loading and 
hauling, it is termed as blasting. Hence, blasting is a method of rock breakage used in 
different types of excavations and is a well-established technique that has been used 
since times immemorial. Blasting is the core of the mining activity world over. 

The objectives of blasting in the diverse projects vary and depend on the fnal 
desired outcome of the planned application. In civil structures, it is used to create 
space for hosting surface or underground structures like foundations, tunnels, defence 
installations, nuclear power plants, nuclear waste repositories, and underground space 
creation, in addition to the production of construction material and dimensional rocks. 
However, the objective of blasting in mines, which produce minerals, is to fragment 
the rock to achieve a desirable size in tune with the system requirements and at the 
same time throw and heave the broken rock into a particular profle which is econom-
ically feasible for lifting or loading, transportation or hauling, and further breaking 
by mechanical means to achieve the desired size of fragments. In addition, there are a 
multitude of applications of blasting, most of which have been compiled in Figure 1.1. 
Although mechanical methods of excavation are gaining pace with the introduction of 
effcient tunnel boring machines and roadheaders, blasting continues to be the major 
method of rock breakage, considering its comparative economical advantage over 
other methods. It will not be out of place to mention that blasting, which encompasses 
creation of space or production of minerals, is part of our daily life. 

For a common man, blasting entails explosive, threat, and danger to life. Terror-
ism is also deeply connected with explosives, which for the sake of human interest 
has not been described further. However, for a blasting engineer, the word “blast-
ing” denotes a complex process of breakage of rockmass through interactions of 
products of detonating explosive with rockmass for its removal aimed to beneft the 
humanity and of course, production-related proftability. Accordingly, our focus will 
be on mining as mines consume the maximum quantities of explosives. The explo-
sive market is estimated to grow from $18,000 million in 2021 to $22,000 million by 
2028.1 Deployment of such volume of explosive in mining also means consequent 
high-probability dangers associated with blasting. 

https://doi.org/10.1201/9781003327653-1


  

 

 
 
 
 
 

 
 
 
 

 

2 Flyrock in Surface Mining 

FIGURE 1.1 Broad spectrum of application of blasting in various types of projects. 

Blasting in mines through the science of rock breakage has progressed signif-
cantly in recent years. With the advent of supercomputing, advanced numerical meth-
ods, high-fdelity sensors and high-speed data acquisition systems, interdisciplinary 
studies, and artifcial intelligence methods, the fndings related to explosive-induced 
breakage of rocks have yielded tangible results for feld deployment. To drive the 
topic in hand, it is imperative to have a broad idea of what is being discussed. A blast 
design props up even at the stages of feasibility and detailed project report formu-
lations for a mining project or even civil works of varied types. The requirement 
of annual production volume defnes the daily production demand in mines and as 
such, the volume of rock that needs to be blasted at a time. This defnes several other 
components like the drill diameter, the shovel, and the hauler capacities and hence 
the blast design, as will be explained further. Blast design once tested and accepted 
in actual conditions transforms into a production pattern. 

1.1 BLASTING BASICS 

Blasting, or chemical excavation method, involves application of explosive energy 
to fragment and throw rock. Bhandari (1997) provided a complete information on 
the explosive energy partitioning and its utilization by productive and unproductive 
results of blasting. It is believed that only a fraction of energy, supplied to the rock 
by the explosive, is utilized in fragmenting and throwing the rock to a distance, 
and most of this energy is transformed into ground vibrations and air overpres-
sure. It may be pointed out that the energetics of a blast is a very complicated 
subject owing to high speed of explosion in a blast, instant release of energy, and 
its rapid dissipation. However, there are cases which document the components 
of the energy entering different domains. An energy transfer effciency test called 



 
 
 

  

  

 

 
 

3 Introduction 

the “cylinder expansion test” introduced by Ouchterlony et  al. (2004) claims to 
quantify the partitioning of explosive energy into various components and provide 
the details of the energy transmission and conversion into seismic, kinetic, and 
fragmentation energies. 

Sanchidrián et  al. (2007) concluded that 2–6% of the total available energy is 
expended in the form of fragmentation, 1–3% for the seismic energy, and 3–21% for 
the kinetic energy. They added that for a confned blasthole, the seismic energy was 
9% of the heat of explosion. Calnan (2015) claimed to account for 73% of the total 
explosive energy available in a blasthole that included energies for borehole cham-
bering (13%), rotational kinetic energy (25%), translational kinetic energy (5%), and 
air overpressure (28%) and concluded that borehole chambering, heave, and air blast 
are the largest energy components in a blast. However, Comeau (2019) argued that 
major energy may be consumed in crushing to generate particles of <1 mm size and 
hence estimation of quantity of fnes generated is important while providing frag-
ment size distributions during measurement. 

One important assertion about blasting is that explosives used in breakage do not 
know the rockmass and in turn rockmass does not know the explosives. The inter-
action starts when an explosion takes place in a blasthole. The enormous amount of 
energy in the range of 10–15 GPa, confned in a blasthole, on release, starts the talk 
with the rockmass. The huge blasthole pressures that are confned can be held in a 
blasthole over a very short span of time ranging from few microseconds to few milli-
seconds. During this process, two major mechanisms come into play. 

1. The shock due to sudden release of energy or simply the detonation pres-
sures interact with the rockmass being loaded. 

2. The borehole pressure due to highly confned gases try to escape through 
least resistance paths in multiple ways. 

The shock is believed to create fractures in the rockmass and consumes maxi-
mum pressure generated by the explosive (Cunningham, 2006) and creates a zone 
of breakage zone about the blasthole modelled by Esen et al. (2003). The blasthole 
pressure gets activated simultaneously or with a delay of fraction of second which 
is believed to expand the existing or newly formed cracks and produce further frag-
mentation and displaces the fragmented rock to a distance forming a muckpile. The 
phenomenon is discussed in detail by Mortazavi and Katsabanis (2000) and Sim 
et  al. (2017). A  complete description of the blasting fracture mechanics, the the-
oretical foundations, and its application in rock breakage can be found in Zhang 
(2016). Different recent studies have focused on impact of various factors like role of 
initiation point (Long et al., 2013), rockmass discontinuity orientation and their dip 
on process of burden breakage (Ash, 1973; Mortazavi & Katsabanis, 2000), effect 
of in situ stresses on rock breakage (Yi et al., 2018), and rock-explosive interactions 
(Raina & Trivedi, 2019). 

Irrespective of the said facts, it is believed that a very small fraction to the 
tune of 1% of the explosive energy of a blast may propel rock fragments to unde-
sired distances and can be dangerous (Berta, 1990). However, none of the recent 
research has mentioned the energy component transformed to fyrock, probably 



  

 

 

 

  
 
 

4 Flyrock in Surface Mining 

because it is not a regular outcome of a blast and is restricted to poor design, 
human factors, special conditions of rockmass, or malfunctioning of the pyrotech-
nic delay elements. 

Such rock fragments emanating from a blast, travelling beyond expected distances 
called fyrock, are the subject of this work. However, before describing the details, it 
is good to understand what are the objectives of blasting? 

1.2 BLASTING OBJECTIVES 

As mentioned earlier, the major objectives of blasting are to break the rockmass, dis-
place it from its in situ position, and to throw the broken rock fragments up to a desired 
distance and a heap of proper shape, for effcient loading and hauling (Figure 1.2). 

The rockmass fragmented by blasting needs to be loaded and transported in an 
economical way. Hence, the two outcomes of blasting, viz. fragmentation and heave, 
are of prime importance to a blasting engineer, as these defne the economics of a 
mining operation. This means that the broken material should be of required size and 
the blasted muck should be casted in a profle that is favourable to the loading equip-
ment, and, in relevant terms, they are in tune with the requirements of the mining 
subsystem or the system. 

Accordingly, blasting cannot be seen in isolation being part of a complete system 
and its outcome signifcantly affects the economics of the downstream operations. 
Blasting is thus a unit operation of a larger system, generally called as mine–mill 
fragmentation system (MMFS; Figure 1.3), mine to mill system, or drill to mill sys-
tem. There are two subsystems of “mine” and “mill” in the said system. Metal and 
non-metal mines generally operate the full MMFS, but coal mines fall within mine 

FIGURE 1.2 The processes of breakage and throw due to blasting in a surface mine. 
(a) Blast bench. (b) Rock breakage in progress (bench being blasting). (c) Throw of the 
broken rockmass (muck) to a distance. (d) Throw (distance) and heave or fnal shape of 
the broken material. 
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subsystem only. Owing to the economic requirements and environmental constraints, 
the objectives of blasting can be further described as follows: 

1. Breaking of rock by explosives can yield anything, from dust to huge boul-
ders. Fragmentation requirements vary from mineral to mineral. The basic 
principle is that large equipment is not made to handle large fragments of 
muck, but to handle large volumes of the blasted material. Too small frag-
ments will involve excessive handling and also reduce the value of ore, and 
too large fragments will signifcantly hamper the productivity (Cunning-
ham, 2019). The specifcations of loading equipment and size of crusher 
generally dictate the requirement of fragment size from blasting and hence 
their optimization. Fragmentation is generally defned in terms of mean 
fragment size (k50) and the uniformity index (n) assessed with the help of 
Rosin and Rammler (1933) distribution or Swebrec distribution (Ouchter-
lony, 2005). 

2. Throw is an important requirement for loading as it defnes the muck profle 
or heave and is generally measured in terms of muck profle angle (α). An 
optimum muck angle (αopt) is different for different loading equipment and 
depends on the basic operational mechanism of the loading equipment, i.e. 
whether the loader digs and loads or just scrapes and loads. The looseness 
of the muck and angle of the muck will defne the performance of the load-
ing equipment directly and the hauling equipment indirectly. One of the 
important aspects of throw of the material during blasting and its impact on 
ore dilution is described in detail by Gilbride et al. (1995). 

3. The presence of people, structures, and other facilities, referred to as objects 
of concern (OCs) and defned later, within and outside the mine is of con-
cern during blasting. The proximity of such object(s) constraint the blasts in 
terms of weight of explosives used in a hole and in a delay to control ground 
vibration and air overpressure within the stipulated limits. Such limits are 
dependent on excitation frequency of the vibrations and the nature of the 
structure infuenced by blast vibrations. The explosive quantity used in a 
blasthole also infuences the fyrock travel distance. 

Moreover, there are conficts in the cost equations of the unit operations (Calnan, 
2015; Comeau, 2019; Mackenzie, 1966; Ouchterlony et al., 2004) and hence a mine– 
mill fragmentation system (MMFS; Figure 1.3), as defned by Hustrulid (1999a), 
demands optimization. 

There are several works of interest that have provided various methods and means 
to defne the MMFS optimization that in general translates into blast fragmentation 
optimization. Few such references along with some case studies are compiled in 
Table 1.1 for the inquisitive reader. 

To achieve the fragment size determined by the system, it is imperative to have a 
proper blast design that yields the economically viable fragment size. It is important 
to understand that the philosophy of a blast design varies signifcantly for under-
ground and surface blasting. In the case of underground blasting, a free face must be 
created, as it is available in surface (mine or bench) blasting. 



  

 

6 Flyrock in Surface Mining 

FIGURE 1.3  Mine–mill fragmentation system explained; the alignment of the unit opera-
tion arrows points to the change in the cost of the unit operation with change in fragmentation 
from small to large size (representative trends only). 

A signifcant number of books, texts, and publications, available online and 
offine, exist on methods of blast design engineering and system optimization. There 
are quite a few online platforms that claim to work towards optimization of frag-
mentation through proper engineering and database management systems. Surface 
blast principles are, however, dealt with in detail by Hustrulid (1999a, 1999b) that 
include almost all the design considerations, particularly, fragmentation, heave, role 
explosives, and accessories like delays in the process of rock breakage. On the face 
of it, one may feel that the design process is intricate and quite complex. However, 
it will not be out of place to mention that the design process of blasting is not as 
complicated as it appears. An attempt is hence made here to understand the design 
process in simple terms. 

1.3 BLAST DESIGN 

The basic requirements of productivity of a mine are very simple to grasp as the 
annual production and availability of working hours and equipment can be simply put 
to work to defne the production requirements of a mine, as explained in Figure 1.4. 



 
 

TABLE 1.1 
Some Important Mine–Mill Fragmentation System Optimization Works by Few Researchers 
S. No. Citation Focus Details 

1 Mackenzie (1966) Blast optimization This is a classical study defning and setting the trend for blast fragmentation 
optimization. The concept was further analysed and detailed by Hustrulid (1999a) 

2 Hagan and Just (1974) Rock breakage theory and optimization Discusses in detail the breakage by explosive, the role of rockmass, blast design, 
and explosives on rock fragmentation; muckpile and its impact on economics 

3 Morrell and Munro (2000) JKMRC model application Describes the use and prediction capabilities of the model for MMFS optimization 
in three mines 

4 Grundstrom et al. (2001) MMFS optimization A case study of Porgera gold mine reporting signifcant improvements in 
productivity 

5 Scott et al. (2002) MMFS optimization constraints Reviews the literature on fragmentation optimization. Stress the proper 
identifcation of cost-savings in different unit operations in mine-to-mill process and 
role of experienced manpower to handle such analysis 

6 Jankovic and Valery (2002) Case study on MMFS optimization Used extensive data to demonstrate the role of analytics and blasting data for cost 
optimization and report 4–5% increase in the mill by using such strategies 

7 Chakraborty et al. (2004, 2005) Fragmentation evaluation Comprehensive studies on evaluation of rockmass and blast design variables and 
their relative importance in defning the fragmentation during blasting and the 
system optimization routine 

8 Esen et al. (2007) MMFS optimization Defned a method called process integration and optimization involving 
benchmarking, rock characterization, measurements, modelling/simulation of 
blasting and comminution processes, and/or material tracking to achieve best 
throughput 

9 Raina (2013) Basics of fragmentation optimization Describes the basics of fragmentation optimization and how it is to be achieved 

10 Nageshwaraniyer et al. (2018) Energy-based method for MMFS A case study of copper mine economic analysis of unit operations. Spectral imaging 
optimization was used for tracking, material handling network, and stochastic power consumption 

in mine-to-mill operations. Economic analysis model was developed for cost-saving 
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(Continued) 
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TABLE 1.1 (Continued) 
Some Important Mine–Mill Fragmentation System Optimization Works by Few Researchers 
S. No. Citation Focus Details 

11 Erkayaoglu and Dessureault MMFS optimization using data mining Data mining and use of random forest and adaptive boosting algorithm for 
(2019) and neural networks optimization of mine-to-mill for control and analysis of drilling- and blasting-

related variables infuencing the productivity 

12 Leng et al. (2020) Oversize and toe formation Statistical constitutive model developed to evaluate the formation of oversize 
fragments and toe formation in blasting. Role of satellite holes assessed with the 
help of numerical method 

13 Messaoud et al. (2020) Oversize production Microlevel investigations in rock microfabric properties using XRD and 
microscopic grain identifcation methods to defne the production of oversize 
fragments in blasting. Statistical methods used for defning optimization of 
fragmentation due to blasting 

14 Assegaff et al. (2020) Uniform fragmentation Uses statistical methods to optimize the fragmentation for obtaining uniform 
fragment size in blasting 

15 Park and Kim (2020) MMFS optimization using MWD A case study of MMFS optimization using monitoring while drilling (MWD) data. 
technique Penetration rates were derived from blastholes to work out the intact rock properties 

and predict the breakage effciencies infuencing comminution energy. Tensile 
strength and Bond work index correlated with the penetration rate data for crushing 
and grinding effciencies 

16 Fang et al. (2021) Fragmentation modelling Firefy technique has been used for optimization of blast fragmentation and effcacy 
of the model discussed in comparison to the other artifcial intelligence methods 
used for such operations 

17 Zhang and Luukkanen (2021) Feasibility of MMFS optimization Discussed the studies that have been successful and unsuccessful in MMFS 
optimization owing to evaluation of energy effciency, microcracks in blasting, and 
redistribution of energy from blasting to milling. The feasibility of MMFS 
optimization is discussed 
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A brief perusal of Figure 1.4 reveals that the productivity in a mine is pivoted on 
the blast design, as it determines the degree of fragmentation and hence the pro-
ductivity of the MMFS. It will not be out of context to explain the terminology, as 
provided in Figure 1.5, that is important before discussing blast design. As far as 
possible, the definitions given hereunder, their explanations, and symbols have been 
adopted as recommended by the ISRM (Rustan et al., 2011).

Free Face

“Free face, an unconstrained surface almost free from stresses, e.g., a 
rock surface exposed to air or water or buffered rock that provides room 
for expansion upon fragmentation. Sometimes also called open face.”

Blasthole

“Blasthole, a cylindrical opening drilled into rock or other materials for 
the placement of explosives.” Please note that it is used as a single term 
and not as “blast hole.”

FIGURE 1.4 Basic requirements of productivity in mines. The process involves a compre-
hensive analysis of requirement of productivity, equipment, and scale of blasting along with 
its controls.
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Blasthole InclInatIon or angle

“Blasthole inclination (αbi), (°), the angle between the blasthole and a 
reference plane, normally the horizontal plane.”

Blasthole length

“Blasthole length (lbh), (m), the length of the blasthole as measured 
along the axis from the collar to the bottom of the hole.”

Bench heIght

“Height of bench (Hb), (m), the vertical distance between the floor and 
top level of a bench.”

suBdrIllIng length

“Subdrill, length of blasthole drilled below the planned level of breakage at the 
floor in bench blasting. subdrilling length (lsub), (m), the length of subdrilling.”

Burden

“Burden in bench blasting (B), (m), shortest perpendicular distance 
between the centre line of a charge and the free or buffered face.”

FIGURE 1.5 Basic design variables of a blast in surface mine operations.
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Burden has several variants as follows: 

“Burden in crater blasting, blasted burden (true or effective burden) 
(Bb), (m), critical burden in bench or crater blasting (Bc), (m), drilled bur-
den (Bd), maximum burden (Bmax), optimum burden (Bopt), optimum break-
age burden (Boptb), optimum fragmentation burden (Boptf), practical burden 
(Bp), reduced burden (Br). 

For explanations, please see Rustan et al. (2011). 

spacIng 

“Spacing (S), (m), distance between boreholes in a row. It is necessary to 
distinguish between spacing in drilling (Sd) and spacing in blasting (Sb).” 
The variants are as follows: 

“Spacing in blasting (Sb), (m), the distance between holes initiated on 
the same delay number. In some blasts when all holes are initiated with 
different delays the spacing in blasting is defned as the distance between 
holes detonated consecutively. Spacing in drilling (Sd), (m), the distance 
between adjacent holes in a row of holes located parallel to the blast 
front or free surface.” 

stemmIng 

Stemming length (ls) (m), the length of stemming, is the length of the blasthole 
at its collar that is not flled with explosives and is packed with inert material as 
defned herein: 

Stemming, the inert material of dense consistency, such as drill cuttings, 
gravel, sand, clay, or water in plastic bags, which is inserted in the collar of 
the drill hole after charging and used to seal the hole temporarily in order to 
prevent venting of gas, increase blasting effciency, to reduce air shock waves 
or dampen any open fames. In coal mining water stemming cartridges work 
very well as they also contribute to minimise dust and fres. Stemming is also 
used as a material to separate explosive charges in a borehole (decks). Stem-
ming can also be used to seal off open cracks intersecting the blasthole. 

specIFIc charge 

Specifc charge (q) (kg/m3) or (kg/t) is the consumption (planned or actual) of explo-
sive per cubic metre or metric ton of rock. 

hole-to-hole delay 

Hole-to-hole delay (tHH) is the time delay used between two adjacent blastholes in 
order to fre these at different timings. 



  

 

  

 

   

  

  

  

   

  

12 Flyrock in Surface Mining 

row-to-row delay 

Row-to-row delay (tRR) is the time delay used between adjacent rows so as to fre the 
holes at different timings. 

oBjects oF concern 

Objects of concern (OCs) are objects that are amenable to blast-induced damage, 
injury, or fatality and are detailed later. 

Blast danger Zone 

Blast danger zone (BDZ) is the zone around blasting, generally stipulated or fxed 
by regulatory authorities, that must be secured and cleared of OCs before blasting. 
Special permissions are required to blast within BDZ. 

1.3.1 understandIng the Blast desIgn 

To design a simple blast, a few rules may be suffcient to understand the same. The 
process will include the following: 

1. Assessing the rockmass blastability preferably in terms of its density and 
p-wave velocity that defne its impedance. There have been attempts to clas-
sify rockmass for blasting in terms of rock factor or rock constant “c” by 
umpteen number of authors. However, a comprehensive review of blastabil-
ity can be traced to Salmi and Sellers (2021). A scheme for assessing the 
blastability is also provided in Section 1.3.2. 

2. Fixing of the drill diameter which is generally dictated by the bench height 
and production requirements. However, if a drill with prefxed diameter is 
already in place, it will constraint the design process. 

3. Selection of explosive by knowing its characteristics like its density (ρe) 
and velocity of detonation (cd). This will be determined by the rock type. 
A broad criterion is to match the explosive impedance (cd × ρe) with the 
impedance of the rock, i.e. the product of density of rock and p-wave veloc-
ity (ρr × cp). 

4. Predicting the initial fragment size through established equations of mean 
fragment size (k50) and uniformity index (n) of the fragment size distribution. 

Thus, the drill diameter (d) in conjunction with the blastability of the rockmass and 
fragmentation size requirements defnes the blast design since one of the major blast 
design variables, burden (B), is directly related to it (Ash, 1990; Konya & Walter, 
1991)—see Figure 1.4. 

The variables of blast design that get defned in the process include the burden (B), 
the spacing (S), and the stemming length (ls): 

B k  d´ (1.1) = b 
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TABLE 1.2 
Representative Values of Parameters for Major Blast Design Variables 
Parameter Minimum Average Maximum Comments, Use 

kb 25 – 40 Minimum for very hard rock and maximum for 
highly jointed soft rock 

ks 1.0 1.25 2.0 Minimum for uniform and controlled fragmentation, 
average for general blasts, and maximum for 
rockmass that requires simple dislodgement 

kls 0.6 0.7 1.0 Minimum generally not recommended if fyrock is a 
concern, average for general blasts, and maximum 
for controlled blasts 

S k B´ (1.2) = s 

ls = kls ´ B (1.3) 

The practical values and the range of parameters of kb, ks, and kls in Equations 1.1, 
1.2, and 1.3, respectively, are given in Table 1.2. 

Another simple method for blast design, that incorporates density of rock and 
explosive, corrections for number of rows, geological conditions, and other condi-
tions, is provided by Konya (1995). Once the design is ready, the fragmentation can 
be evaluated with the help of Equation 1.4, called the Cun–Kuz model (Cunning-
ham, 2005): 

/ æ115 ö0 8. 1 6k50 c q ´Q ´ç ÷ (1.4) = ´  
Sè wr ø 

where k50 is the mean fragment size (cm), c is the rock factor or constant varying 
between 0.2 and 22 and can be estimated with the help of Equation 1.8, q is the 
specifc charge (kg/m3) defned as the ratio of total explosive used in kg to the total 
volume of blast in terms of product of B, S, and bench height, Q is the explosive 
weight (kg), and Swr is the relative weight strength of explosive relative to ANFO 
(ammonium nitrate fuel oil). 

With moderate changes in blast design and experimentation thereof, the optimum 
fragment size and blast design can be identifed to draw a production pattern. Simu-
lations or trial and error method with proper planning can be put to work for estab-
lishing the best pattern along with blast design iterations (Hustrulid, 1999a). Further 
requirements of throw and reduction of other unwanted effects can be taken into 
consideration by changing the hole-to-hole and row-to-row delays and even mod-
ifying the blast design. The aforementioned method will require measurement of 
fragmentation that is economically viable. 

19 
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1.3.2 rockmass and Blast desIgn 

Rockmass is a very complex subject as it involves several inherent properties that 
puzzle the excavation engineer. Engineers, however, need to predict the outcome 
of the blast process that demands conversion of the rockmass and explosive into 
numbers. However, explosive characteristics can be achieved by measurements, as 
explained further in Section 1.3.3. Putting rockmass to numbers is not only a very 
subjective matter but also a complex topic. The inherent variability of rockmass in 
terms of its strength, jointing, and microscopic properties makes it fuzzy and quali-
tative in nature. Frequent spatial changes of rockmass properties add to the diffculty 
of rockmass characterization. Consequently, a host of classifcations, methods, and 
rating systems for rockmass blastability, that defnes the ease with which a rockmass 
can be fragmented by blasting, have been developed over the years. To have a broad 
idea of the complexity in rockmass classifcations and blastability, a list of rockmass 
properties (both macroscopic and microscopic), their nature, and the feasibility of 
converting them to numbers is presented in Table 1.3. 

The role of microscopic properties in blasting and their incorporation in classif-
cation systems is practically lacking or has been confned to laboratory or numerical 
analytical studies only determining the strength of the intact rocks (Abdlmutalib & 
Abdullatif, 2019; Ahmad et al., 2017; Dobereiner & de Freitas, 1986; Jeng et al., 
2004; Kamani & Ajalloeian, 2019; Messaoud et al., 2020; Tsidzi, 1990). 

The macroscopic properties of rockmass have been treated fairly that resulted in 
summation of such individual properties with development of rating or classifcation 
systems. Accordingly, there have been multiple attempts to group these into classi-
fcation systems to defne the classes of the rockmass for ascertaining stability of 
the rockmass in underground excavations by employing the macroscopic variables. 
Some such classifcations that have been widely used for mining and excavation 
purpose are rockmass rating or RMR (Bieniawski, 1989), rock quality designation 
(RQD) (Deere  & Deere, 1989), index of rock quality or Q (Barton et  al., 1974), 
mining rockmass rating (MRMR) (Laubscher & Jakubec, 2001), geological strength 
index (GSI) (Marinos et al., 2005), and rockmass index or RMi (Palmström, 1996). 
These classifcation systems are functions of strength of intact rock and adjusted for 
block volume or joint density, joint roughness, joint alteration, joint size, and many 
other such properties. RMi is probably the frst such classifcation that incorporates 
blastability of rockmass but has not been used for the purpose because of complex-
ity in calculations. Aforementioned systems are known as geomechanics rockmass 
classifcations. 

There are some examples of use of rockmass classifcations for defning the out-
come of blasting, but such studies are restricted to quality of blasting (Innaurato 
et  al., 1998) impact on controlled blasting (Singh, 2003), prediction of overbreak 
(Jang & Topal, 2013; Koopialipoor et al., 2019; Segaetsho & Zvarivadza, 2019), and 
blast overpressure (Gao et al., 2020) in mining or civil excavations. Also, such stud-
ies are negligible and have not been widely accepted by feld engineers for defning 
the blastability of the rockmass. Adhikari et al. (1999) based on a signifcant data-
base of an underground cavern contested the fndings of Ibarra et al. (1996) that the 
performance of underground blasts like overbreak and underbreak can be compared 
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TABLE 1.3 
Comprehensive Evaluation of Rockmass for Engineering Purpose and 
Problems Faced in Quantifcation of Rockmass 
Macroscopic Nature/Comments Microscopic Nature/ 
Properties Properties Comments 

Intact rock strength Quantifable, compressive, and tensile Grain size Quantifable 
strengths of intact rock can be 
determined in laboratory 

Rockmass strength Diffcult to quantify owing to the Grain fabric Fuzzy 
presence of joints and joint properties 

Lithology Varies signifcantly over space, Grain boundary Fuzzy, fractal 
presents diffculties in 
characterization in linear excavations 
like tunnels 

Number of joints Quantifable Boundary strength Diffcult to quantify 

Joint spacing Quantifable, multiple joints Grain shape Quantifable but 
association create confusion. Which diffcult to include in 
joint to be considered is an issue defnitions 

Weathering Qualitative, quantifcation is not practical 

Joint length Quantifable 

Joint strength Quantifable, cohesion, and friction 
angle needs detailed testing 

Joint alteration Qualitative, diffcult to put to numbers 

Joint flling Qualitative, diffcult to put to numbers 

Joint aperture Quantifable, fuzzy Fuzzy indicates the variations are not 
crisp but overlap in different classes Joint roughness Fuzzy, fractal 
Fractal means that the distributions have 

Block size Quantifable, varies over a wide range, 
fractal nature

restrictions due to joints occurring in 
different planes 

p- and s-wave Quantifable, have signifcant role as 
velocities blasting, and these properties are of 

dynamic nature. Defne impedance, in 
situ determination requires a lot of 
expertise 

to rockmass quality “Q” of Barton et al. (1974). Only a few works report the use of 
such classifcations in fyrock modelling, e.g. use of RMR (Bakhtavar et al., 2017; 
Hasanipanah & Amnieh, 2020; Monjezi et al., 2011, 2012; Wu et al., 2019) and GSI 
(Asl et al., 2018). 

Although some of the properties considered in such classifcations can be used in 
assessing blastability, the use of such classifcations in totality needs further evalu-
ation, despite the fact that some recent studies (Nur Lyana et al., 2016; Sayevand & 
Arab, 2019) have used such classifcations for defning fragmentation. In order to 
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compare the role of rockmass on fragmentation, Doucet et al. (1996) conducted lim-
ited number of experiments. Despite no signifcant relationship, they observed that 
the characteristic particle size after blasting (kc blast) increases when the character-
istic size of the in situ distribution (kc in situ) increases and that kc of blast decreases 
when the adjusted powder factor or specifc charge increases. 

The energy-block-transition model (Lu  & Latham, 1998) defnes blastability 
through a comprehensive mathematical treatment of transformation of in situ block 
size to fragmented block size. They considered 12 factors, viz. uniaxial compres-
sive strength, uniaxial tensile strength, density of rock, static or dynamic modulus 
of rock, p-wave velocity, Schmidt hammer rebound value, Poisson’s ratio, fracture 
toughness of rock, mean in situ block size, fractal dimension of in situ block sizes, 
wave velocity ratio, the ratio of p-wave velocity in feld to that in laboratory or by 
rock quality designation (RQD), and cohesion or friction angle of discontinuity plane 
for defning the blastability. However, they (Lu & Latham, 1998) ignored the role 
of joint orientation, although Chakraborty et al. (1994) had observed that the mean 
fragment size along with depth and cross-sectional area of broken zone were signif-
cantly impacted by the joint orientation. 

Zhang (1990) developed a fvefold classifcation system for blastability based 
on structural types of rockmass, characteristics of crustal stress, and blasting 
vibration effect. Kiliç et  al. (2009) proposed a model for blastability in terms 
of tensile strength and coeffcient of internal friction. Tsiambaos and Saroglou 
(2010) proposed a classifcation method for rockmass excavatability based on 
GSI but they did not present any formula for the calculations. Split Hopkinson 
pressure bar tests on artifcial joints in blocks were conducted by Li et al. (2016) 
who observed that the deformation of rockmass is caused by the joint defor-
mation and the closure volume of joints increases when contact area declines. 
Choudhary et al. (2016) reported the effect of rockmass properties on blast frag-
mentation and concluded that with increase in porosity, compressive strength, 
and size of the in situ blocks, the fragment size decreases but increases, if the 
density of rock increases. 

Also, the rockmass, blast design, and explosive properties vary in a mine and 
results in variation in blast outcomes like fragmentation. If such variables are treated 
as distributions, the resultants conform to the measured results (Thornton et  al., 
2002). The method proposed by Thornton et al. (2002) provides a basis for revisiting 
the existing method of reporting and analysis of blast input, output variables, and 
related analysis. McKenzie et al. (1982) attempted to quantify rockmass variables for 
modelling of fragmentation using a cross-hole acoustic method incorporating prop-
agation velocities of waves and their attenuation. Nevertheless, Sellers et al. (2019) 
concluded that there is no commonly accepted method of rock blastability which 
should include rockmass strength, fracture frequency, and density. They supported 
the use of seismic velocities for such classifcations as these present a holistic picture 
of the rockmass. 

However, the classifcation system that defnes blastability specifcally while using 
the macroscopic properties of the rockmass was introduced by Lilly (1986). This 
classifcation, popular despite its shortcomings, uses a rating for different factors 
used to defne a blastability index (IBI) and is given in Table 1.4. 
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TABLE 1.4 
Ratings Used in Lilly’s (1986) Classifcation System for Defning 
Blastability Index 
Description Rating Details 

RMD (rockmass description) 10 Powdery/Friable rockmass 

20 Blocky rockmass 

50 Totally massive rockmass 

JPS (joint plan spacing) 10 Close spacing (<0.1 m) 

20 Intermediate (0.1–1.0 m) 

50 Wide spacing (>1.0 m) 

JPO (joint plane orientation) 10 Horizontal joints 

20 Dip out of the face 

30 Strike normal to face 

40 Dip into face 

SGI = Specifc gravity infuence 25 × SG − 50 SG is the specifc gravity of rock (t/m3) 

H = Hardness 1–10 Mohs scale 

The blastability index (IBI) can be calculated by substituting the ratings in Table 1.4 
in Equation 1.5: 

IBI = 0 5´ RMD + JP + JPO SGI + H ) (1.5) . ( + 

The specifc charge (q) and the energy factor (Ef) can be worked out from Equa-
tions 1.6 and 1.7, respectively. 

q = .0 004´ (1.6) IBI 

Ef = 0 015´ IBI. (1.7) 

The rock constant or factor mentioned in Equation 1.4 can be estimated by modi-
fcations in Equation 1.5 and is given in Equation 1.8. 

IBI = 0 06´ (RMD + SGI H  ) (1.8) . + 

Bameri et al. (2021) presented a case study of application of IBI (Lilly) in a copper 
mine while using Monte Carlo simulation and found that the method provided a bet-
ter insight into the combinatorics of rockmass factors. The use of IBI in the prediction 
of fragmentation and wall control is documented in Chung (2001), Chung and Kat-
sabanis (2000), Monjezi et al. (2011), Segaetsho and Zvarivadza (2019), and many 
other such publications. 
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TABLE 1.5 
Blastability Classifcation of Rockmass Incorporating Adjustments for 
Confnement and Stiffness (Ghose, 1988) 
Variable Range 

Density, t/m3 <1.6 1.6–2.0 2.0–2.3 2.3–2.5 >2.5 

Rating 20 15 12 6 4 

Spacing of discontinuity, m <0.2 0.2–0.4 0.4–0.6 0.6–2.0 >2 

Rating 35 25 20 12 8 

Point load strength <1 1–2 2–4 4–6 >6 
index, MPa 

Rating 25 20 15 8 5 

Joint plane orientation Dip into face Strike normal Horizontal Dip out of Strike at an 
to face joints face acute angle 

to face 

Rating 20 15 12 10 6 

Adjustment factor, AF1 Highly confned, Rating = −5 
Reasonably free, Rating = 0 

Adjustment factor, AF2 Hole depth to burden ratio >2 0, Rating = 0 
Hole depth to burden ratio = 1.5–2.0, Rating = −2 
Hole depth to burden ratio <1.5, Rating = −5 

Blastability Index 70–85 60–70 50–60 40–50 30–40 

Specifc charge (kg/m3) 0.2–0.3 0.3–0.5 0.5–0.6 0.6–0.7 0.7–0.8 

Lilly’s (1986) classifcation system was further modifed by Ghose (1988) by 
incorporating infuence of confnement and stiffness that is defned in terms of hole 
depth to burden ratio (Equation 1.9): 

I = r + J + I + J + A + A (1.9) BI r s PL PO F1 F 2 

where ρr is the density of rock in t/m3, Js is the joint spacing in m, IPL is the point load 
strength index, JPO is the joint plane orientation, and AF1, AF2 are adjustment factors 
(Table 1.5). The blastability index values and corresponding specifc charge can also 
be seen in Table 1.5. 

The classifcation of Ghose (1988) is an improvisation of Lilly’s (1986) original 
method as it incorporates some design aspects relating to hole depth, burden, and 
confnement of a blast. Other blastability assessment methods have been compiled 
in Table 1.6. 

Salmi and Sellers (2021) summarized most of the developments in blastability 
through a comprehensive review that found the dynamic breakage of rockmass infu-
enced by the strength, density, and structure of the discontinuities in the rockmass. 
They held that in situ block size defnes the fragmentation, attenuation of stress waves, 
and the extent of damage zone about blastholes. They identifed a comprehensive list 
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TABLE 1.6 
Few Other Blastability Assessment Methods 
S. No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Citation

 Muftuoglu et al. 
(1991) 

Scott (2020) 

Borquez (1981) 

Da Gama (1995) 

Scott and Onederra 
(2015) 

Rakishev (1981) 

Kou and Rustan 
(1992) 

Zou (2016) 

Qu et al. (2002) 

Livingston (1956) 

Dick et al. (1990) 

Equation 

q = 0 0025. s t 
2 - 0 0042. s t 

+ 0 1363. 

fd = 0 0371. ´ rr 
2 - 0 0512. rr 

+ 0 9172. 

c = . + . ln(ERQD 1 96 0 27 ́  ) 

C = 15424c2 - 2840 6. c +146 27. 

0 5315.fs = . c0 0549 ́ s 

s = 0 1. s +ss c t 

2s c = c 

Er ´ ´Qe2 h 

N 
= 67 22 - 38 44Ln V. . ( )  
+2 03Ln (rrCp ) + K

c 

. 

f = a r c2 
e 1 e d 

c a  r s a ) log (a S  )b 
= (2 r c 3 javg 

Bopt = k 3 Q 

log (Bopt + ra ) = . 2 2 1 846 
+ .  log 0 312 Q 

Description 

Specifc charge (q) in kg/m3 is defned 
as second-order equation of tensile 
strength (σt) 

Density factor (fd) which is a quadratic 
function of density (ρr) is in T/m3 

Blastability factor (c), equivalent rock 
quality designation (ERQD) that 
considers joint strength and alteration 

Blastability (c), cohesion (C) is in MPa 

Strength factor (fs) as a function of 
compressive strength (σc) is in MPa 

Limit strength of the rocks (σs) in MPa 
is expressed in terms of compressive 
and tensile strengths 

Blastability factor (c) is given in terms 
of σc, detonation heat (Qe) in kJ/kg, 
Young’s modulus of rock (Er) in 
MPa, and energy transformation 
effciency (η) 

Rock blastability is defned in terms 
of volume of crater (Vc) in m3, 
p-waves velocity (cp) in m/s, ρr in 
×103 kg/m3, index of rock 
fragmentation (K) 

Explosive strength factor (fe), ρe in 
×103 kg/m3, constants which can 
be determined from regression analysis 
(a1, a2, a3, α, β), velocity of 
detonation (cd) in m/s, blastability (c), 
average joint spacing (Sjavg) in ×10−2 

m, σc in ×10−3 MPa 

Optimum breakage burden distance 
or charge depth (Bob) in m, k is a 
constant of proportionality 
expressing rock and explosive 
properties, Q is the mass of 
explosive in kg 

Optimum breakage burden distance is 
a function of apparent crater radius 
(ra) and the equivalent TNT charge 
mass (Q) 

11 
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of almost 32 blastability assessment methods found in the literature and ranked these 
for establishing a three-dimensional classifcation system for blastability. However, 
the universal acceptance of any of the methods, defning blastability, is still lacking. 

1.3.3 explosIve and Blast desIgn 

Explosives properties play a major role in defning the outcome of the blast (Božić, 
1998). A  comprehensive detail of explosives, their use, and some basics related 
to the outcome of blasts are provided by Cooper (1996). Commercial explosives 
are mixtures and hence cannot be directly tested effciently for their energy yield. 
Fragmentation effciency is based on ratings that are given by explosive manufac-
turers through proprietary codes (Djordjevic, 2001). This limits the comparison of 
results of explosives of different manufacturers. Djordjevic (2001) developed a code 
named CHEETAH for explosive standardization and concluded that the code can be 
used further for explosive selection on optimal basis. Owing to the complexity in 
such calculations of energy, users generally resort to simple assessment of velocity 
of detonation and density of explosives that yields its impedance and have been 
correlated for determination of blasthole pressures (Cooper, 1996) as provided in 
Equation 1.10: 

2re ´ cdPb = (1.10) 
8 

where Pb is the blasthole pressure, ×103 MPa, and is generally considered to be 0.5 
times the detonation pressure; ρe is the density of explosive, kg/m3; and cd is the 
velocity of detonation of explosive, m/s. 

As mentioned earlier, the best way of selection of explosive is to match the imped-
ance of rock with that of the explosive. There is a further scope of improvement in 
Equation 1.10 since density and velocity of detonation of explosive are related sig-
nifcantly (Cunningham, 2006). 

Trials in blocks of granite, porous limestone, and sandstone with different explo-
sives were conducted by Bergmann et al. (1973) and they correlated energetics of 
explosive with average fragment size, burden velocities, and peak pressures. Berg-
mann et al. (1973) derived that the fragmentation is controlled by explosive energy, 
its detonation velocity and density, and the degree of coupling, a ratio of explosive 
diameter to blasthole diameter. Although the study was conducted on blocks and may 
not refect the impact of joints, the study provides a basis for determination of such 
relationships and need to be extended to full-scale blasting in actual bench condi-
tions. However, such conclusions were contested by Cunningham (2006) citing that 
the results were due to the size of blocks and not due to the velocity of detonation. 
Later, Agrawal and Mishra (2017) found that the velocity of detonation of an explo-
sive, under specifc rock and test conditions, can be used to evaluate the performance 
of the explosive used in mines. 

A method to determine the pressure fuctuations adjacent to the blasthole due to 
gas was developed by Williamson and Armstrong (1986). The authors claim that the 
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